

Gary W. Jones

gjones@darpa.mil 703-516-6038

Multi-Disciplinary Optimization At Any Stage of Product's Life Cycle

Multiple Virtual Products
Operating in Physics Based
Synthetic Environments

Detailed Smart Product Model

Virtual Life-Cycle for Acquisition of Complex Products

Acquisition Paradigm Change

Acquisition Management

T&E

- Product Model Definition
- Multi-Disciplinary Analysis
- Design Environments
- Simulation
- Solid Model (
- Visualization

 Performance-Based Costing • Design for Manufacturability

Logistics

Operations

- Design for Maintainability
- Virtual Manufacturing

set Visibility iterprise Infrastructure

- Mission Effectiveness
- Early/Continuous Training
- Design for User/Operator
- Train to Maintain

- Requirements

 POM Development

 Fiscal Constraints

 Market Assessment

 User Pull
 - Procurement Strategy
 - Other Life Cycle Considerations
 - Process Issues

Build

Design

Concept

Programmatic Strategy

- Infrastructure
- Engineering Experiments
- User Involvement
- Transition

Critical Infrastructure Technologies

- Smart Product Model (SPM)
- Multi-Disciplinary Optimization (MDO) and Multi-Disciplinary Analysis (MDA)
- Communications and Collaboration
- Virtual Design Environment

Engineering Experiments

SBD Architecture Overview

REQUIREMENTS ANALYSIS

FLOW DOWN
 SURVIVABILITY INTO HM&E
 AND COMBAT SYSTEM
 DESIGN

SURVIVABILITY

DAMAGE ASSESSMENT

VULNERABILITY

RCS SIGNATURE

REDUCE DETECTION DECREASE VULNERABILITY

PRODUCT & PROCESS MODEL

- BASELINE DESIGN
- SURVIVABILITY REQ
- THREAT DEFINITION
- COST REQUIREMENTS
- MEASURE EFFECTIVENESS

WARFARE EVALUATION

- PROGRAM DETECTION
- PROGRAM LIMIT IN LOCATION
- EFFECTIVENESS OF COUNTER MEASURES

HM&E DESIGN

- CHANGE HULL SHAPE
- MODIFY STRUCTURE

INCREASE DEFENSIVE CAPABILITY

COMBAT SYSTEM DESIGN

ADD MODIFY WEAPONS

Engineering Proto-Federation – Prototype Demonstration

Distributed

(In th

Virtual Ship 'rototype in a **Synthetic** nosphere/Ocea

Ship

- **Virtual Ship Product Model**
- **Comprehensive Object Description**
- **Design Variation and Reply Resulting from Threat Interface Collaborative Design Environment Dense**
- **Product Life Cycle Detail and Demo**
- Leads to Elec. System VP w/ Synthetic Environment

Missile Simulate or Stimulate

6DOF

- **Provides Scalable Engineering Functionality**
- **Multiple Demos Embedded**
 - Design
 - Construction
 - **Training**
 - Manufacturing
- **Ship Radar Computed Remotely**

Aircraft: IADS, T&E-EW, JMASS

Jammer Interface w/ Aircraft in the Loop

DESIGN BROWSING

WEAPONS LAYOUT

No line of the heavest from America (the Sale III) and the Sale III of the Sal

CATALOG COMPONENT SELECTION

HULL REDESIGN

SIMULATION DEFINITION

SCENARIO DEFINITION

SIMULATION EXECUTION

- INTEGRATION AND COLLABORATION IN A VIRTUAL ENTERPRISE
- SEAMLESS INTEGRATION OF DATA AND TOOLS
- MULTIDISCIPLINARY ANALYSIS AND EVALUATION OF COMPLEX SYSTEMS

User Involvement

- Aeroelastic Wing Advanced Structural Design
- Virtual Satellite Scaled Manufacturing
- Electro-mechanical System
- Submarine Virtual Test & Evaluation Synthetic Shock Environment

SBD ARCHITECTURE

CAD

- **INTERGRAPH**
- **IDEAS**
- PRO-E
- **CATIA**
- **CV-CADDS**

USER APPLICATIONS

DISCIPLINE SPECIFIC ANALYSIS

- STRUCTURAL DYNAMICS
- **HYDRODYNAMICS**
- SPACE ENVIRONMENT
- THERMAL
- **SURVIVABILITY**

SBD SERVICES

- **FEDERATION MANAGER**
- **RUN TIME INFRASTRUCTURE**
- **3D VISUALIZATION AND INTERACTION**
- **MULTI-DISCIPLINARY OPTIMIZATION**
- WRAPPER TOOL KIT
- **GUIS AND BROWSERS**
- **MEGA PROGRAMMING**

SPM SCHEMA (MODEL, CATALOGS)

MODEL CLASSES

- - COMP.
- SHIP - HM&E
 - CIC — ECS
 - PROP.
- ELECTRICAL **POWER** - DATA

- STRUCTURE AND

MECHANISMS

PROCESSING — PROP.

SPACECRAFT

SBD COLLABORATIVE INFRASTRUCTURE

SBD STANDARDS

- CORBA
- HLA
- HTML

USER GUIS

Aircraft SPM Practical Demonstration

Hybrid Electric Combat Vehicles

- Mission and Requirements
- Weight and Volume Control
- Power System Architecture and Load Management
- Thermal Management
- Power Quality/Stability
- Electromagnetic Compatibility and Grounding
- **Fault Tolerance**

TRANSITION STRATEGY

- SBD Is A Technology Component of ASN-RDA(ARO) Simulation Based Acquisition Program
- Close Coordination With User Community
 - Arsenal Ship Concept Analyses
 - Navy Laboratories Are Team Members
 - Close Coordination With NAVSEA (03)
- Multi-Domain Applications to Stress System and Extend the Base of Users
 - Scaled Manufacturing for Spacecraft
 - Submarine Virtual Test and Evaluation
 - Electro-Mechanical Power Systems for Land Vehicles
 - Advance Structural Design for Aircraft
- Develop a Cross-Service Engineering Experiment

SBD Product Plan

Design and Enterprise/Integration

- Smart Product Model Concept and Structure
- Smart Product Model Catalog
 - Text
 - Graphical
- Vendor Interface ProductNet
- Smart Product Model Interface to the Virtual Design Environment

Human Computer Interfaces

- Multiple Immersion
- Space Mice/Head-mounted Displays/Flat Screens, etc.
- Pointers and Menus in the VDE
- Simultaneous Tasking of Multiple Computers
- Model Generation Data Entry and Modification Augmented

Network and Communications

- Remote Distributed Immersion
- Area Distribution of the Product Model
- Database Synchronization
- Distributed Interactive Simulation (DIS) in an Engineering Environment
- DIS Linked to a Smart Product Model

Maintenance Analysis

- Use of Anthropomorphics
- Maintenance Accessibility

Time Motion Studies

 Derivation of Forces and Other Ergonomic Information

- Training Link to Early Design
- Complex Casualty Modeling in VDE
- Multiple Immersion
- Physical Interaction with the VDE
- Sensor-generated Information
 - Characterization of the Environment
 - Update to the Synthetic Environment

Manufacturing Analysis

- Component Assembly
- Rapid Feedback Impact of Design Changes
 - Time and Cost
 - Manufacturing Tradeoffs
 - Business Decision Aid
- Impact of Alternate Manufacturing Facilities
- Agile Manufacturing Infrastructure
 - Product and Process Model Mutual Interrogation

- Megaprogramming
- Rendering Techniques
 - Culling
 - Viewing Frustrum
 - Resolution

SBD's CHANGE ON ACQUISITION PROCESS

I Compress the Lifecycle

- DO WHOLE LIFECYCLE IN PARALLEL AND PROCEED DIRECTLY TO MANUFACTURING
- I Update Key Assumptions Midstream
 - PROVIDE TECHNICAL, COST, AND SCHEDULE RISKS FOR REAL-TIME IMPACT ASSESSMENT
- I Integrate Players
 - SHARE MODELS AND SIMULATIONS BETWEEN PLAYERS IN FEDERATED SYSTEM

